
Cluster-Based Repositories and Analysis

Technical Report NIM-2004-001

Contract: DAAH01-03-C-R219
Final Report

Reporting Period:
27 May 2003— end of project

Prepared by:
Alok Choudhary, Ph.D.
Nimkathana Corporation

1807 W. Winnemac, Unit A
Chicago, IL 60640

773.515.2562
choudhary@nimkathana.com

Approved for public release; distribution is unlimited.

20040210 098
BEST AVAILABLE COPY

1 Overall Status
This is the final report for the DARPA SBIR project "Cluster-Based Repositories and Analysis". Tasks
described in our original proposal have been completed. Drs. Alok Choudhary and George Thiruvathukal
met with Lt Col Dr. Doug Dyer on July 23, 2003 at DARPA to present the progress on this project and
obtain feedback.

2 Task Description and Status

2.1 Task: Scalable Commodity-based Cluster

We designed and configured a Linux-based cluster with 1 terabyte of storage, parallelism in storage, and
several computing nodes for parallel computing using commodity components as described in the proposal.

Figure 1 shows the configuration of the cluster. The cluster has the following characteristics and speci-
fication. Nimkathana bought all commodity components and buih the cluster using in-house experience.

Figure 1: Figure of the Configured Cluster

• 8-node, 1 Terabyte (TB) Cluster

• 120GB (1 TB) Local Disk per node

• AMD Athlon XP 2400+ (2.26 GHz)

• Switched Ethernet 100 Mbps (for now)

• 1.25 TB RAID Server

• ATA -> SCSI RAID Controller

• Hot-Swappable Drives

• 1 TB Usable Filesystem Storage

• Standard RedHat 9.0

• Private Network

• DHCP, NIS, NFS (for shared software and authentication); OpenLDAP later.

• MPICH Distribution for communication.

2.2 Task: Software Architecture

Figure 2 illustrates the overall software architecture, which comprises layers for parallel file systems; paral-
lel I/O and a communication runtime system; software infrastructure to enable basic primitives and fimctions
found in parallel data mining algorithms with well defined interfaces. This architecture was presented and
explained to Lt Col Dr. Doug Dyer on July 23, 2003. As part of phase I, components of this architecture
were to be prototyped. We have completed the design of the architecture.

Parallel data
mining software

Data extraction
Layer

Parallel DB and
infrastrcuture

Figure 2: Overall Software Architecture for Scalable Data Analysis and Mining on Commodity Clusters

2.3 Task: Parallel Software Infrastructure

We proposed to port, implement and evaluate public domain software for communication and I/O within the
cluster based on the the Message Passing Interface (MPI).

1000
Message length (bytes)

Figure 3: Communication latency on the cluster. This communicaiton latency is the latency seen by the
software that uses the communication primitives. It is obtained using MPI functions.

2.3.1 Subtask: Parallel Communication Software

We ported and installed the Message Passing Interface (MPI) standard on the cluster testbed to enable
high-performance communication between cluster nodes (See http: //www. mpi-forum. org/). We
installed MPICH-1.2.5 on the cluster. MPICH (http: //www. mcs . anl. gov/mpi/mpich) is a popu-
lar, freely available implementation of the Message Passing Interface (MPI) Standard. We ran some basic
performance tests to measure the performance of MPICH on the cluster. We used an MPI version of the
Netpipe benchmark to measure the latency and bandwidth. For communication between two nodes of the
cluster, the MPI latency was measured to be about 60 /xs for a 0-byte message as shown in Figure 7. The
bandwidth flattened out to about 85 Mb/s for messages of size 32 Kbytes and higher (Figure 8). The Fast
Ethernet network on the cluster has a maximum bandwidth of 100 Mb/s, and we are able to get 85% of that
through MPI. We also ran some tests to measure the performance of collective communication algorithms
in MPI, such as broadcast. For this purpose we used the mpptest benchmark that is available as part of
MPICH. Figure 5 shows the performance of MPI_Bcast on 3-8 nodes of the cluster for different mes-
sage sizes. The graphs illustrate the power-of-two nature of the binary tree algorithm used to unplement
MPI Beast for these message sizes. The performance on 3 and 4 nodes is about the same because they
fall within the same power of two (4). Similarly, the performance for 5, 6,7, and 8 nodes is about the same
because they fall within the same power of two (8).

We also tested the performance instrumentation and visualization facilities available in MPICH, namely
the MPE logging library and Jumpshot performance visualizer. Figure 6 shows the Jumpshot view for a
program that calculates the value of pi in parallel. The figure shows time on the X-axis and the processes (8)
on the Y-axis. The horizontal bars show the time taken for computation and MPI communication operations
used in this program, namely, MPI_Bcast, MPI_Reduce (global sum), and MPI_Barrier.

10000 100000
Message length (bytes)

Figure 4: Communication bandwidth on the cluster. This communicaiton bandwidth is the bandwidth seen
by the software that uses the communication primitives. It is obtained using MPI functions.

Performance of MPI Broadcast

600 800
size (bytes)

Figure 5: Performance of Broadcast fimction on the cluster.

Time Lines : Connected States in Thread view at tiame index = U
Miscellaneous Operations-

74 5 280066 5.280158 5.28025 5.280342 5.2804;;3 5.280525 5.280617 5,280709 5.280801 5.;

i<l P Broadcast I *^ Ijcomputftl : a feducej '^llME.!

E Mi Siat«s

Change Orreritation

Figure 6: Performance Instrumentation and Visualization of various components of communication on the
cluster.

2.3.2 MPICH-2

We installed MPICH-2 on the cluster and compared the performance with MPICH-1. MPICH-2 is an all-new
MPI implementation being developed at Argonne National Laboratory (http: //www. mcs. anl. gov/mpi/mpich2).

Among its new features is a much faster implementation for TCP, faster process startup, new collective com-
munication algorithms, better derived datatype support, and an almost-complete implementatoin of MPI-2
functionality, including one-sided communication, dynamic process management, and parallel I/O. MPICH-
2 is implemented directly on top of TCP (sockets), unlike MPICH-1 which was layerfcd on top of p4. p4 is a
complete communication library in its own right, and it introduces an extra memory copy on all messages.
We compared the performance of MPICH-2 (version 0.96 beta) and MPICH-1 (version 1.2.5) on our cluster.
The results are presented below.

We first ran some basic performance tests to measure the latency and bandwith using the Netpipe bench-
mark. Figure 7 shows the latency for communication between two nodes of the cluster. For MPICH-1.2.5,
we measured the latency to be 60 ^s for a 0-byte message, whereas with MPICH-2 it was 46 i^s. This 23%
improvement in latency is primarily due to the elimination of p4 as a communication layer in MPICH-2.
The bandwidth resuhs are shown in Figure 8. The bandwidth is limited by the bandwidth of fast ethemet
(100 Mb/s). MPICH-2 saturates at about 90 Mb/s, whereas MPICH-1 gives about 85 Mb/s. The higher
bandwidth is because of fewer memory copies.

We also ran some tests to compare the performance of collective communication. Figures 9- 11 show
the performance of MPI_Reduce global sum operations for arrays of size 512K to 2M integers. MPICH-
1 uses the standard binary tree algorithm to do a reduction, whereas MPICH-2 for large messages uses a
more sophisticated algorithm that minimizes bandwidth usage. It implements the reduce as a reduce-scatter
followed by a gather. As a result, the performance is better than the reduce in MPICH-1, as shown in
Figures 9-11.

We also measured the performance of broadcast in MPICH-1 and MPICH-2 (see Figures 9-11). MPICH-
1.2.5 and MPICH-2 both use the same algorithm for broadcast, so the difference in performance is only due
to the overall faster commxmication in MPICH-2.

2.3.3 Subtask: Parallel File System

Parallel file systems facilitate parallel access to data firom parallel program. If applications are I/O intensive
(clearly the case in the data warehousing, mining and analysis domain and subject of this proposal), and if
I/O and disk accesses are done sequentially, the advantages of parallel computations will be lost. In high-
performance computers, consisting of expensive disk arrays and specialized software, which is non-portable,
expensive and works on specific vendor platforms, a portable parallel file system for cluster environments is
highly attractive. As a part of this task, have ported the evaluate, adapt, port and install a parallel file system
called "Parallel Virtual File System (PYFS)" available in the public domain to the cluster environment (and
described in more details in the proposal). Performance evaluation is under progress.

Experiments
We installed the PVFS parallel file system on the cluster. PVFS is a popular open-source parallel file

system for Linux clusters being developed at Argonne National Laboratory and Clemson University
(http: //www.parl. clemson. edu/pvf s/). PVFS allows multiple clients to concurrently write to
or read from a single file. For this purpose, it uses multiple I/O servers and files are striped across the servers.
The file striping is transparent to the user; the PVFS client software knows which parts of a file are stored
on which servers. We installed PVFS on four nodes of our cluster. The PVFS I/O daemons (servers) were

400

350 -

MPICH-1
MPICH-2

Latency

300 -

0 250

2
1 200

100

500 1000 1500

Message length (bytes)

2000

Figure 7: MPICH-1 versus MPICH-2 communication latency

Bandwidth

80
MPICH-1
MPICH-2

(0
B 40

■g

■D
C
(D
tn

20

10
100 1000 10000 100000

Message length (bytes)

1e+06 1e+07

Figure 8: MPICH-1 versus MPICH-2 communication bandwidth

Performance of MPI Reduce

4

3.5

O o c

(0

E o

1.5

0.5

MPICH-1 3 nodes -^
MPICH-2 3 nodes -

400 600 800 1000 1200 1400 1600

Array size (K ints)

1800 2000 2200

Figure 9: Performance of MPI_Reduce on 3 nodes

Performance of MPI Reduce

3.5

2.5 -

o
CD 2
0) *'»-»^
(D
E 1.5

1 -

0.5

MPlCH-1 4 nodes
MPlCH-2 4 nodes

0
400 600 800 1000 1200 1400 1600 1800 2000 2200

Array size (K ints)

Figure 10: Performance of MPI_Reduce on 4 nodes

10

o

(D

I-

Performance of MPI Reduce

MPICH-1 5 nodes
MPICH-2 5 nodes

0
400 600 800 1000 1200 1400 1600 1800 2000 2200

Array size (K ints)

Figure 11: Perfonnance of MPI_Reduce on 5 nodes

11

Performance of MPI Broadcast

350

300

250

^ 200
E
i-

150

100

50 j I I 1 I I I 1 1 L.

0 100 200 300 400 500 600 700 800 900 1000 1100

Message size (bytes)

Figure 12: Performance of MPI_Reduce on 3 nodes

12

Performance of MPI Broadcast

400

350

300 h

^ 250
D

jl 200

150

100

50

MPICH-1 4 nodes
MPICH-2 4 nodes

1 r -\ r n r

J I I L j L J L

0 100 200 300 400 500 600 700 800 900 1000 1100

Message size (bytes)

Figure 13: Performance of MPI_broadcast on 4 nodes

13

Performance of MPI Broadcast

500

450

400

350

^ 300

ji 250

200

150

100

50

MPICH-1 5 nodes
MPICH-2 5 nodes

0 100 200 300 400 500 600 700 800 900 1000 1100

Message size (bytes)

Figure 8: Performance of MPI_Reduce on 5 nodes

Figure 14: Performance of MPI_broadcast on 5 nodes

14

340

320

300

280
w
B
b 260
s

240
■D

^
■o 7?() c

200

180

160

140
50 100 150 200 250 300 350 400

Size per write (Kbytes)

500 550

Figure 15: Parallel I/O bandwidth with PVFS

running on the four nodes, with each server using the local disk on the node to store the distributed file. We
ran some basic tests to measure the bandwidth for concurrent reads and writes to a common file. We used a
parallel MPI program running on all four nodes, in which each process opened a common file and wrote to
(or read fi-om) different parts of the file 100 times. We varied the size of each write and read. The results are
shown in Figure 15. Note that the bandwidth is limited by the fast ethemet connection between the nodes
and hence is limited to 400 Mbits/s on four nodes. The write bandwidth increases as we increase the size
of the write and reaches up to 330 Mbits/s. The read bandwidth is lower, reaching up to 232 Mbits/s for the
data sets chosen. The write bandwidth is higher because the writes get cached on the PVFS servers before
being written to disk. In the case of reads, the data must be read irom the disk where it resides.

2.3.4 Subtask: Node Database System

We incorporated the MySQL database system, which is the world's most popular open source database
(http://www.mysql.com/). Its architecture lends itself to high performance and easy customization. Exten-

15

sive reuse of code within the software and a minimalist approach to producing functionally-rich features
has resulted in a database management system with high-performance, compactness, stability and ease of
deployment. The unique separation of the core server from the storage engine makes it possible to run with
strict transaction control or with ultra-fast transaction-firee disk access, whichever is most appropriate for
the situation. We have incorporated the MySQL database systems on the nodes of our cluster as proposed
in the proposal.

Performance of MPI Reduce

1 -

1 1 r——1 1 1 \ i 1
3 nodes —
4 nodes
5 nodes
6 nodes

■ 7 nodes — ..■•■ /
8 nodes - .,■•'' /

y"
/ .'' / / / ' / ' /

• <' ' y^ X .' y^
y .' y^

y .' y^
y ■' y / .' jy

y ' y^ '' ' /
■'' / -'"' y^

/ ,' y"'^ ,*-''

y ,• jy
y y y^ ,''

y y / ,-''
,-' /' .' y"^ --'

■' / y y^
^ ■' y"^ A'

y' y^^^ '''''

1 1 1 II 1 ■ ..L 1

,1000 1200 1400

Message size (Kbytes)

2000 2200

Figure 16: This figure illustrates the performance of the sub/reduce parallel primitive which is one of the
most common operations found in most statistical and data mining algorithms. Cleariy, good performance
and scalability are obtained for this operation on our cluster.

2.4 Task: Parallel primitives and Functions

Aggregate and reduction operations are two important parallel primitives as they are needed in almost all
statistical and data mining function, including in slicing data along one or more dimensions, computation
of aggregate along one or more dimensions, slicing and dicing of data, accessing data in ranges along
one or more dimensions, functions to count, compute statistics, frequent set calculations (such as required

16

in the Association rules discovery algorithms), computations of distributions and histograms required for
multidimensional clustering and others.

We parallelized, implemented and tested the performance of MPI Reduce for global sum operations for
integers. The performance results are in Figure 16. It also shows the binary tree nature of the algorithm:
power-of-two number of processes perform better than non-power-of-two number processes. Clearly, good
performance and scalability are obtained for this operation on our cluster.

2.5 Task: Parallel Multidimensional Clustering

We proposed to design, develop, implement and evaluate a parallel version of a multidimensional clustering
algorithm. Clustering is a very common mining technique to determine clusters of similar records in a
populations.

Data clustering techniques help discover interesting patterns (called clusters) from large data sets. Such
patterns often exist in high-dimensional space. Efficient data clustering techniques address data and noise
that both exist in high-dimensional spaces and subspaces, which result in an exponential growth of the
search space for clusters. We implemented a data clustering primitive based on the parallel adaptive grid
and density-based algorithm called MAFIA [5]. Details of this algorithm are described in the proposal are
not presented again.

The data-clustering primitive just discussed was implemented and executed over a data set of 4,281,782
records (> almost 0.5GB), which contains 20-dimensional data with 5 clusters and each cluster is of 5
dimensions. We experimented with the cluster for 2,4, and 8 processors, using data page sizes of 8K, 16K,
32K and 64K bytes. Figure 17 presents the total response times of the clustering primitive with respect to
increasing number of processors across all the page sizes (the amount of data accessed from the disk in one
request). The results show a reduced response time as we increased the data page size, on account of better
disk utilization. Clearly, scalable performance is achived for this algorithm.

2.6 Task: Parallel Association Rules

We proposed to design, develop, implement and evaluate a parallel version of the Association Rules data
mining (ARM) algorithm on the cluster. Association rules are commonly used for finding patterns and rules
of events that occur together, purchase pattems, and for prediction. The algorithm is described in detail in
the proposal, and therefore, is not presented here again for the sake of brievity.

Typically, an ARM process consists of two riiajor phases. During the first phase, a set of frequent
itemsets is found. An itemset is frequent if its support is greater than a given threshold S. Then, in the
second phase, the rules that satisfy the minimum S and the mmimum confidence C are identified. The first
phase, which performs the Frequent Set Counting (FSC), tends to be much more expensive than the second
phased especially with a low S, since I usually contains a large number of distinct items. To evaluate ARM
FSC workload, we have adopted an FSC primitive based on the work proposed in [1]. The FSC primitive
exploits the total memory of a cluster system for higher efficiency.

To evaluate the FSC primitive, a synthetic transactional database was generated using the data generator
similar to that available from IBM, which is used to evaluate ARM algorithms [4]. The database had an
average transaction size of 20, and each transaction can contain up to 25 distinct items. 100,000 transactions
were generated for each processor, with a minimum support of 5%. Figure 18 presents our results for the
FSC primitive executed on our cluster with 2, 4, and 8 processors. It should be noted that the data size is
also scaled linearly with the number of processors. For example, data size used for 4 processors is twice

17

1000

0)
E

U) c o a

number of procesors

-8 KB •16 KB 32 KB -X—64 KB

Figure 17: Implementation and Evaluation of the Parallel Multidimensional Clustering Algorithm on the
Linux Cluster. Input data includes more than 4 million records. The graph shows almost linear scalability
with the number of processors even though the network is only a 100Mb ethemet. It is also clear that use of
different block (page) sizes from disks provide scalable performance even though higher block size results
in lower access costs, and therefore, provides better performance.

that used for 2 processors. Therefore, for complete scalability, the response time should remain constant or
increase slightly.

The results indicate that the FSC primitive provides scalable performance with increasing data size.
Again, that the data size increases Hnearly with the number of processors, and therefore, keeping the re-
sponse time constant demonstrates scalability with data size as well as with number of processors in the
cluster.

3 Milestone/Task Status

3.1 Overview

The remaining subsections describe progress on the major tasks. For each task, we describe the following:

Schedule Whether the task is on schedule. We use the term in progress to describe a task that is partially
or nearly completed and not started to describe a task that has not been started yet.

% Completion An estimate of the percentage completed for any task in progress.

Testing Program Not applicable to this project.

Designs Completed Summary of designs and implementations. In the context of software-related projects,
we interpret designs as prototypes developed thus far and any supporting design/architectural sketches.

18

number of processors

Figure 18: Implementation and Evaluation of the Parallel Associations Rules Discovery Algorithm on the
Linux CIuster.The database had an average transaction size of 20, and each transaction can contain up to 25
distinct items. 100,000 transactions were generated for each processor, with a minimum support of 5%. It
should be noted that the data size is also scaled linearly with the number of processors.

3.2 Task: Scalable Commodity-based Cluster

Schedule

completed

% Completion

100%

Testing Program

Not applicable.

Designs Completed

As illustrated earlier in the report, we have designed, developed and built the terabyte cluster. Figure 1 shows
the figure of the cluster, along with the RAID storage system. Specifications of the cluster are described
earlier.

3.3 Task: Software Architecture

Schedule

completed

19

% Completion

100%

Testing Program

Not applicable.

Designs Completed

We have finalized the design of the software architecture as proposed in the proposal. Figure 2 shows the
architecture. If refinement is needed in the fixture due to required extensions, those refinements will be

incorporated.

3.4 Task: Parallel Software Infrastructure

Schedule

Completed

% Completion

100%

Testing Program

Not applicable.

Designs Completed

We have completed the communication software implementation and evaluation and its performance and
scalability results are presented earlier. We have performed extensive evaluation and shown scalability on
our cluster. Furthermore, we implemented two versions of the communication software and compared their
performance. The parallel file system has been ported. We have also evaluated its performance. Performance
results have been presented earlier. Node database system, MySQL has also been incorporated into the
cluster and tested.

3.5 Task: Parallel Primitives

Schedule

Completed

% Completion

100%

Testing Program

Not applicable.

20

Designs Completed

We have completed and evaluated parallel primitives, in particular the reduce and aggregation operations.

3.6 Task: Parallel Multidimensional Clustering

Schedule

completed

% Completion

100%

Testing Program

Not applicable.

Designs Completed

We have implemented and evaluated the parallel multidimensional clustering algorithm based on multiple
adaptive finite interval analysis. We evaluated the quality and scalability on our cluster infirastructure.

3.7 Task: Parallel Association Rules

Schedule

In progress

% Completion

100%

Testing Program

Not applicable.

Designs Completed

We have implemented and evaluated the parallel association rules algorithm based on hybrid data distri-
bution to achieve effective load balancing and scalability In our results we demonstrated scalability with
data size as well as number of processors. Furthermore, we evaluated the algorithm on realistic data sets
reflecting real-world transactions in different domains.

4 Outstanding Issues from Previous Report

None.

21

5 New Problems

None.

6 Conferences and Trips

Drs. Alok Choudhary and George Thiruvathukal visited Dr. Lt. Col. Doug Dyer at DARPA on July 23,
2003 to update him on the progress of our project as well as to obtain feedback.

7 Any Potential Impacts on Schedule

None.

8 Conclusions and Future Plans

We have completed all tasks and have been able to demonstratre the ideas in building commodity cluster,
designing and evaluting software architecture as well as designing and implementing primitives and parallel
data analysis algorithms. In fact, we were able to alternative implementations and evaluation for some cases.
We believe, we have a sclable cost-effective cluster design and sclable software infrastructure to enable large
data analysis algorithm. We would be interested in exploring larger projects based on this initial system.

9 Itemized Person-Hours and Costs

Description
PI (Choudhary)

Senior Personnel (Thiruvathukal) Labor
Student Interns

Consultant (Thakur)

Quantity
90
45

1000
20

Rate
$125
$125
$20

$100

Sub-Total
$11,250
$5,625

$20,000
$1,000

During this progress period, the PI, senior personnel, and student interns completed the aforementioned
tasks.

References

1 E-H Han, G. Karypis and V. Kumar, "Scalable Parallel Data Mining for Association Rules". IEEE Trans-
actions on Knowledge and Data Engineering, Vol. 12, No. 3. May/June 2000.

2 S. Orlando, R Palmerini, R. Perego and F. Silvestri, "An Efficient Parallel and Distributed Algorithm for
Counting Frequent Sets". VECPAR 2002 High Performance Computing for Computational Science.
June 2002.

3 R. Agrawal and J. C. Shafer, "Parallel Mining of Association Rules". IEEE Transactions on Knowledge
and Data Engineering, 8(6): 962-969. December 1996.

4 IBM Quest Data Mining Project. Quest website: http://www.almaden.ibm.com/cs/quest/syndata.html.

22

5 H. Nagesh, S. Goil and A. Choudhary, "Parallel MAFIA: Parallel Subspace Clustering for Massive Data
Sets". Data Mining for Scientific and Engineering Applications. Academic Publishers. 2001.

23

